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Abstract
In this paper we review the first-principles theoretical framework of the
Bethe–Salpeter equation which is nowadays the state-of-the-art approach for
including self-energy, local fields and excitonic effects in the surface optical
response. Two different approaches for calculating the dielectric screening
will be described. In both cases a parallel and efficient iterative algorithm to
find numerically the solution of the BSE equation has been implemented. In
fact, if the surface states are not energetically separated from the bulk states
and if one is interested in describing a large energy window, the traditional
approach involving a full diagonalization of a very large excitonic Hamiltonian
is prohibitive. The reflectance anisotropy spectrum of the monohydride Si(100)
is considered and compared with experiments. A comparison of the results
obtained within different treatments of the electron–hole screening is made.
Convergence and numerical problems are discussed.

1. Introduction

In recent years, optical spectroscopies have been more and more involved in experimental in situ
surface studies because they are non-damaging, they allow the study of surfaces even under non-
ultrahigh vacuum conditions and are sufficiently fast to follow real time surface modifications.
In particular, the technique of reflectance anisotropy spectroscopy (RAS), which measures the
anisotropy with respect to light polarization, has shown excellent surface sensitivity. In the
case where RAS is used on the surfaces of cubic materials, the bulk contribution to reflectance,
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as described by Fresnel formulae, does not depend on the direction of light polarization,
whereas the surface contribution, due to the lower symmetry of the surface, may depend on it.
Hence, the reflectance difference between measurements carried out with two different light
polarizations in the surface plane, the reflectance anisotropy (RA) (typically only a few per
cent of the total reflectance), is generated at the surface [1]. However the interpretation of
these experiments is generally not straightforward. Hence, the full potential of surface optical
spectroscopy, as well as of any other spectroscopy, can be exploited only thanks to a strong
interaction between experimental and theoretical work. The contribution of theorists to this
collaboration can be of two types:

(i) to use the calculated optical spectra to identify the geometrical model that better reproduces
the experimental results,

(ii) and to give the theoretical interpretation of the structures observed in the experimental
spectra.

In this context we recently assisted in a rapid development of efficient first-principles
approaches to the calculation of the optical spectra of bulk materials, nanostructures, clusters
and surfaces. Two main approaches have been proposed so far: many-body perturbation
theory (MBPT) [2], and time-dependent density functional theory (TDDFT) [3]. Both open,
in principle, a pathway for theoretically correct calculations of optical spectra. The MBPT
combines the GW approach for the single quasi-particle states with the solution of the
Bethe–Salpeter equation for the excitonic contributions. Calculations based on MBPT have
been successfully carried out since the 1980s and it is now a well established methodology.
Unfortunately the large numerical effort requested by the different steps of the calculations
makes MBPT extremely demanding for systems with many inequivalent atoms. In this paper
we will show that using high-performance supercomputers and efficient and parallel algorithms,
it is nowadays possible to apply successfully MBPT to surfaces.

An alternative approach for computing the neutral excitations is TDDFT, that is expected
to be more efficient than the MBPT-based approach. TDDFT is really promising but many
conceptual and computational problems remains still unsolved preventing its application to
complex systems [4].

For this reason we will focus, in this work, only on the MBPT approach.

2. Theoretical framework

Density functional theory (DFT) [5] is a single-particle approach that has achieved great success
in calculating the ground state electronic properties of many-electron systems. However, when
physical properties involving excited states are required, this mean-field theory often fails to
describe correctly the experiments yielding only a qualitative agreement with the experimental
spectra.

It is well known that DFT-LDA eigenvalues are not the physical single-particle states
entering in the absorption process. Instead, electron addition or removal energies (such as
those measured in photoemission) should be obtained from an equation similar to the Kohn–
Sham one in which the true electron self-energy operator � appears in the place of the DFT-
LDA exchange–correlation potential. A good approximation for � is given by Hedin’s GW
approach [6] where � is written as the product of the Green function G and the screened
Coulomb interaction W . The true QP energies, however, are still not sufficient to correctly
describe an absorption process, in which electron–hole pairs are created [9]. Their interaction
can lead to a dramatic shift of peak positions as well as to distortions of the spectral lineshape.
As already shown for systems such as bulk and clusters, the agreement between theoretical
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and experimental optical spectra is greatly improved when excitonic effects are included in the
calculations [10, 12, 13, 11].

In the following we will resume in more detail the main equations of the three-step
procedure used to obtain the macroscopic dielectric tensor of surfaces needed to calculate
the reflectance anisotropy spectra [1, 14]. First of all, through a DFT-LDA calculation [5, 15]
with the use of norm-conserving pseudopotentials [16, 17], the geometrical structure of the
relaxed ground state configuration of the surface is obtained by solving self-consistently the
Kohn–Sham equations:

[− 1
2∇2 + V KS

eff (r)]φi(r) = εiφi (r) (1)

where V KS
eff (r) = Vext(r) + VH(r) + Vxc(r), with Vext the external potential, VH the Hartree

potential and Vxc the exchange–correlation of an homogeneous electron gas calculated at the
local density ρ(r) = ∑N

i |φi(r)|2 [15].
The eigenvectors and eigenvalues of the Kohn–Sham equation are then considered as a

first approximation to the true electronic wavefunctions and can be used to obtain the dielectric
function according to the independent particle picture or IP-RPA (independent particle–random
phase approximation) level as a sum over independent contributions from valence–conduction
band pairs at different k-points of the Brillouin zone (BZ) [18].

In the second step the one-particle excitation energies are obtained. The DFT-LDA
eigenvalues are corrected by solving the quasiparticle equation within the GW approximation.
This equation is formally similar to the Kohn–Sham equation but in place of the local,
energy independent exchange–correlation DFT potential the self-energy operator (which is
non-Hermitian, non-local and energy dependent) appears [19]:

(− 1
2∇2 + V ext + V H)�i(�r , ω) +

∫
�(�r , �r ′, ω)�i(�r ′, ω) d �r ′ = Ei(ω)�i(�r). (2)

The calculated quasi-particle energies (i.e. the excitation energies) are the output of this
part of the calculation and with the full dielectric matrix calculated within the random phase
approximation (RPA) at the DFT level they are used as an input for the third step, which is
the solution of the two-particle Bethe–Salpeter equation. Using the GW corrected energies
instead of DFT-LDA eigenvalues the dielectric matrix can be calculated in an independent
quasiparticle picture (IQ-GW-RPA) [20].

Equation (2) is not usually solved directly thanks to the fact that the Kohn–Sham
wavefunctions are often very similar to the GW ones making it sufficient to calculate the
QP correction in first-order perturbation theory [7, 8]. The energy dependence of the self-
energy is accounted for expanding � in Taylor series. The QP corrections are then given
by

�εnk = 1

1 + βnk
〈φLDA

nk |�(εLDA
nk ) − V LDA

xc |φLDA
nk 〉 (3)

where βnk is the linear coefficient in the energy expansion of � around the DFT-LDA
eigenvalues εnk .

The third step is the solution of the Bethe–Salpeter equation (BSE), that describes the
electron–hole pair dynamics. As well explained in the literature [4], the BSE can be written
as a linear problem whose Hamiltonian is given by

H (n1,n2),(n3,n4)
exc = (EQP

n2
− EQP

n1
)δn1,n3δn2,n4 − i( fn2 − fn1) ×

∫
dr1 dr′

1 dr2 dr′
2

× φn1(r1)φ
∗
n2

(r′
1)
(r1, r′

1, r2, r′
2)φ

∗
n3

(r2)φn4(r
′
2) (4)

where fni are the occupation numbers (denoting band index and wavevector), EQP
n2

and EQP
n1

are the quasi-particle eigenvalues and φni are the Kohn–Sham one-particle wavefunctions. The
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kernel 
 contains two contributions: v̄, which is the bare Coulomb interaction where the long
range part corresponding to vanishing wavevector is eliminated, and W , the attractive screened
Coulomb electron–hole interaction. The first term describes local field effects and is exactly
equivalent to the Adler–Wiser approach when the electron–hole attraction W is neglected
[4, 23]. This excitonic Hamiltonian is not Hermitian but, as shown in the literature [12], it
is possible to consider only its resonant part (n2 labelling an empty state, n1 labelling a filled
state), recovering the Hermiticity and reducing the dimension by a factor of two.

The resonant part of Hexc, written in the reciprocal space, is

H res(vck),(v′c′k)
exc = (EQP

ck − EQP
vk )δvv′δcc′δk,k′ +

4π

�

∑
G,G′

{
2
δG,G′ (1 − δG,0)

|G|2 Bkk
cv (G)Bk′,k′∗

c′v′ (G)

− ε−1(k − k′ + G, k − k′ + G′, ω = 0)

|k − k′ − G|2 Bkk′
cc′ (G)Bk,k′∗

vv′ (G′)
}

(5)

where

Bk,k′
n,n′ (G) = 1

�

∫
d3r unk(r)un′k′ (r)eiGr

is the Bloch integral, u is the periodic part of the Bloch wavefunctions and � is the volume of
the unit cell.

3. Numerical details

In this paragraph we discuss the numerical details and evidentiate the existing differences
between the two numerical approaches used in this work. A detailed discussion of the
theoretical results, and their comparison with experiments for the monohydride Si(100), will
be given in the following paragraph. The results, illustrated in figures 1–3, are obtained by
modelling the monohydride Si(100) surface with a repeated slab containing 12 atomic layers
and an equivalent vacuum region, while figures 4 and 5 show the results obtained within the
first computational approach but with a repeated slab of 16 atomic layers. Norm-conserving
pseudopotentials [16, 17] for Si and H atoms have been employed in both cases. Four �k-points
in the irreducible part of the surface Brillouin zone are used for the self-consistent calculation
of the ground-state charge density. In order to make the excitonic calculation feasible, 200
uniformly distributed k-points have been used, although they are not sufficient to give a
complete convergence with respect to the correct sampling of the two-particle density of states.

The three numerical steps are implemented in different ways. In order to distinguish the
two calculations, we will refer to method A for the first, and to method B for the second
one. In method A, the DFT-LDA electronic structure has been calculated within a plane-wave
code [29], while in the second, B, a real space finite-difference code [28] has been used.

We checked that by employing the same slab thickness and number of �k-points, the
repeated slab dielectric functions at the IQ-RPA level, obtained within the two different
approaches, were equal.

Regarding the GW part, the major bottleneck is the computation of the screened interaction
W . In order to reduce the computational effort we followed different strategies in the two
calculations. In the first case (method A), thanks to our past experience of full GW calculations
for the Si(100) surface [21] and to the H saturation of the surface Si dangling bonds, we
hypothesized a small dispersion of the self-energy corrections, and we approximated them with
a rigid scissor operator of 0.6 eV. In the second case (method B), a substantial improvement
in speed has been achieved by using a model dielectric function. A functional form proposed
by Bechstedt et al [22], which reproduces very well the random-phase approximation for bulk
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Figure 1. Surface dielectric functions of monohydride Si(100) 2 × 1 surface for light polarized
along the dimers (full curves) and in the perpendicular direction (dashed curves). Left panels: IQ-
GW-RPA curves: method A (upper panel); method B (lower panel). Right panels: curves obtained
including self-energy, local fields and excitonic effects within method A (upper panel) and method
B (lower panel).

semiconductors, has been used. Moreover, local field effects are approximately described
using homogeneous state-averaged densities as in [22].

The electron–hole screening term, in the excitonic matrix, is also treated in different ways
in the two methods: in method A the inverse of the full RPA static dielectric matrix is used,
while in method B the same model dielectric function as used in the GW step is applied.

Moreover, in order to eliminate the need to diagonalize [12] the very large non-sparse
excitonic matrix (of order of 100 000 × 100 000), two different numerical methods have been
implemented: in method A we implemented, in a parallel version, the Haydock iterative
algorithm proposed by Shirley a few years ago in order to solve the Bethe–Salpeter equation
[24]. The construction of the excitonic Hamiltonian and the matrix–vector products needed
to apply the Haydock approach are distributed among different processors. In method B, the
macroscopic polarizability is obtained from the solution of an initial-value problem [25, 27].

4. Results and discussion

In figure 1 we compare the 12-atomic-layer repeated slab dielectric functions, obtained within
method A and method B, for light polarized along the two perpendicular directions in the
surface plane. In the left panels, we show the IQ-GW-RPA curves obtained within the two
methods (A, upper panel; B, lower panel). The same comparison, but including self-energy,
local-field and excitonic effects, is made in the right panels.

The first point we want to stress is the different behaviour of the GW calculations. In
method A, due to the rigid shift applied to the conduction bands, the GW curves are only blue-
shifted with respect to the DFT-LDA ones, while in the second numerical approach (method B)
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Figure 2. Reflectance anisotropy spectra of the monohydride Si(100) surface. Upper panel: IQ-
GW-RPA spectra; solid curve, method A; dashed curve, method B. Central panel: spectra with
self-energy, local field and excitonic effects included (GW + LF + Exc); solid curve, method A;
dashed curve, method B. Lower panel: experimental spectrum from [26].

the simplified GW method also produces a change in shape of the curves, probably due to an
overestimation of the self-energy correction dispersion. On the other hand, the rigid shift
seems to underestimate the peak positions related to the bulk-like critical points E1, E′

0 and E2

by about 0.3–0.5 eV.
The different approach to calculating W also influences the excitonic part of the

calculations, as evident in the right panels of the same figure: in method A, important
anisotropic excitonic effects appear (upper right panel); in method B, these effects are smaller,
leading essentially to a red-shift of the curves, without really affecting much their shape (lower
right panel).

In figure 2 the experimental RA spectrum (panel (c)) [26] is compared with the theoretical
results. The measured signal is characterized by positive and negative peaks around 3.4 and
4.3 eV. At these energies, the critical points of the bulk electronic responses, the E1 and
E2 structures occur. Therefore, the optical anisotropy of the hydrogen-terminated Si(100)
surface is explained as modulation of the bulk dielectric function. Moreover, since the
dimer-related surface states have been removed from the fundamental gap region and the
characteristic spectral features appear at the energies of the bulk critical points, a large number
of surface-modified bulk states also contribute to the surface optical response. Consequently,
from a theoretical point of view, a large number of electron–hole pairs need to be included
in the calculation. Before starting to comment on the theoretical RAS we want to stress
that the presence of more structures with respect to the experiment is due to the numerical
noise produced by the limited thickness of the slab and by the finite k-point mesh and, for
calculations with excitonic effects included, also by the limited number of electron–hole
transitions considered (this effect is particularly evident in the solid curve of figure 5).
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Figure 3. Upper panel, ε2(ω) for bulk Si, obtained including self-energy correction (solid curve)
and GW, LF and excitonic effects (dashed curve); central panel, (110) component of the imaginary
part of the dielectric response of the repeated slab; GW level (solid curve) GW + LF + Exc,
1100 × 1100G and 50 occupied and 50 unoccupied bands mixed in the excitonic matrix (dashed
curve), GW + LF + Exc with different numbers involved, only 30 occupied and 40 unoccupied
(dotted curve), and a different dimension of the screening matrix (700G × 700G) (dot–dashed
curve). Lower panel: the same component of the dielectric tensor of central panel is reported
but obtained within method B (solid curve) and within method A but with a simple form of the
screening (see the text).

The IP-RPA spectra obtained within the two numerical approaches (methods A and B)
described in the text are not reported in this paper because they coincide with the DFT-LDA
spectrum of [27].

In figure 2(a) we plot the IQ-GW-RPA spectra obtained within the two methods. Important
differences above 4 eV do appear: while with method B an intense negative peak appears [27],
within method A this peak is almost completely absent.

In figure 2(b) the complete theoretical RAS curves obtained with method A (solid curve)
and method B (dashed curve) are reported. In both cases an improvement with respect to
the GW curves is obtained below 4 eV. In the second case the negative peak at about 4.3 eV,
which grows up in the GW part of the calculation, is still present and a good agreement with
the experiment is reached. In the first approach however, a big negative peak is present at
3.7 eV while the lack of a negative peak (at the GW level) at about 4.3 eV remains even when
excitonic effects are included. Comparing these results with the experimental curve [26],
shown in the lower panel, we can deduce the following: at the GW level, approach A probably
underestimates the quasi-particle band dispersion while approach B overestimates it. In the
screening calculation of the excitonic matrix, the opposite behaviour seems to occur.

Furthermore, we plot figure 3 with a double purpose: on one hand we want to compare
the bulk with the repeated slab ε2(ω) obtained within methods A and B; on the other hand we
want to show that the convergence with the number of the electron–hole transitions and the
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Figure 4. Theoretical imaginary part of the surface dielectric functions for light polarized along
the dimers (lower panels) and in the perpendicular direction (upper panels) obtained within method
A. IQ-GW-RPA results: solid curve, 16 atomic layers; dashed curve, 12 atomic layers. Curves
obtained including self-energy, local fields and excitonic effects: solid curve, 16 atomic layers;
dashed curve, 12 atomic layers.
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Figure 5. Theoretical RAS obtained, within method A, including self-energy, local-field and
excitonic effects for slabs of 12 atomic layers (dashed curve) and 16 atomic layers (solid curve).

dimension (in G-space) of the screening matrix, in the electron–hole Coulomb attractive term,
has been tested.

In figure 3(a) we show the imaginary part of the bulk dielectric function obtained at
the GW-RPA level (solid curve) and including GW, LF and excitonic effects (dashed curve) in
order to compare them with the corresponding curves of the Si(100):2H repeated slab (for light
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polarization along the dimers; central panel). In the central panel, different curves (obtained
with method A, but with different sets of transitions and plane wave expansions in the excitonic
matrix) are reported to show the convergence behaviour and also to compare them with the
corresponding bulk curves (upper panel). In the lower panel (figure 3(c)) we plot ε2(ω),
obtained within the first numerical approach (method A), but replacing the full RPA W with
the simple form of W = 1/εbulk

inf r with εbulk
inf = 11.4 and we compare it with the curve obtained

within the second numerical approach B.
This result suggests that the way in which the screening is calculated is crucial in the

final contribution to the excitonic effects at a surface, which are strongly reduced when a
non-full-RPA dielectric function is used.

Finally, in order to understand if the important excitonic effects, observed in method A,
are influenced by the thickness of the slab, we repeated the computational procedure for a
16-atomic-layer slab (with the same vacuum region). Figure 4 shows the comparison of 12
and 16 atomic layers ε2(ω), at the GW (right panels) and GW + LF + Exc level (left panels).
Although moving from a 12- to 16-layer thickness results in a reduction of the excitonic effects,
the peak energy positions remain different from the results obtained within method B.

In figure 5 the theoretical RAS obtained at the end of the three-step procedure is reported.
An improvement in the 16-layer calculation is observed: a low energy negative structure, also
observed experimentally, appears. We also notice the presence of a new negative structure at
about 4.3 eV, and the disappearance of the negative peak at 3.7 eV, not present in the experiment.
This curve is qualitatively similar to that of method B, calculated for a 12-layer slab, shown
in figure 2(b).

5. Conclusions

The two methods employed here to calculate excitonic effects are based on different
approximations. Method A seems to underestimate GW corrections with respect to method
B, while it overestimates the excitonic effects. The RAS spectra calculated within the two
methods for a 12-layer slab, shown in the central panel of figure 2, show similar lineshapes but
are shifted in energy with respect to each other. We believe this to be due to an overestimation
of the electron–hole interaction (screened by the slab dielectric function) in thin slabs within
method A, which does not occur within method B as a consequence of the larger screening:
in fact, in method B, the e–h interaction is basically screened by the bulk dielectric function,
which is larger than the slab one; this is demonstrated by the similarity of the two curves
in the lowest panel of figure 3 (one with bulk screening, the other with that of method B).
However, when the slab thickness increases up to 16 layers, the e–h interaction of method
A decreases, leading to a final RAS curve more similar to that of method B and to the
experiment. In conclusion, method A (more rigorous) and method B (less rigorous but faster),
in the case of Si(100):2H, lead to similar RAS curves when reasonable convergences are
achieved within each method. A calculation of the RAS of surfaces involving several pairs
of valence and conduction bands (such as Si(100):2H), including excitonic effects, is feasible
at present, although computationally very demanding. Our calculations show that surface
optical properties can indeed be calculated taking into account quasiparticle, excitonic and
local-field effects. However, one has to go to the limits of the computational possibilities. As a
consequence, some quantities entering the calculations, e.g. the screening, have to be described
either by not fully converged calculations or within certain approximations. For this purpose,
to improve this situation, one has to wait for the development of more efficient computers
and/or methodologies such as TDDFT [30–32], which should allow us to treat more k-points,
thicker slabs and more realistic dielectric functions.
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